Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We consider a personalized pricing problem in which we have data consisting of feature information, historical pricing decisions, and binary realized demand. The goal is to perform off-policy evaluation for a new personalized pricing policy that maps features to prices. Methods based on inverse propensity weighting (including doubly robust methods) for off-policy evaluation may perform poorly when the logging policy has little exploration or is deterministic, which is common in pricing applications. Building on the balanced policy evaluation framework of Kallus (2018), we propose a new approach tailored to pricing applications. The key idea is to compute an estimate that minimizes the worst-case mean squared error or maximizes a worst-case lower bound on policy performance, where in both cases the worst-case is taken with respect to a set of possible revenue functions. We establish theoretical convergence guarantees and empirically demonstrate the advantage of our approach using a real-world pricing dataset.more » « less
-
Increased availability of high-quality customer information has fueled interest in personalized pricing strategies, that is, strategies that predict an individual customer’s valuation for a product and then offer a price tailored to that customer. Although the appeal of personalized pricing is clear, it may also incur large costs in the forms of market research, investment in information technology and analytics expertise, and branding risks. In light of these trade-offs, our work studies the value of personalized pricing strategies over a simple single-price strategy. We first provide closed-form lower and upper bounds on the ratio between the profits of an idealized personalized pricing strategy (first-degree price discrimination) and a single-price strategy. Our bounds depend on simple statistics of the valuation distribution and shed light on the types of markets for which personalized pricing has little or significant potential value. Second, we consider a feature-based pricing model where customer valuations can be estimated from observed features. We show how to transform our aforementioned bounds into lower and upper bounds on the value of feature-based pricing over single pricing depending on the degree to which the features are informative for the valuation. Finally, we demonstrate how to obtain sharper bounds by incorporating additional information about the valuation distribution (moments or shape constraints) by solving tractable linear optimization problems. This paper was accepted by David Simchi-Levi, revenue management and market analytics.more » « less
-
null (Ed.)Managing large-scale systems often involves simultaneously solving thousands of unrelated stochastic optimization problems, each with limited data. Intuition suggests that one can decouple these unrelated problems and solve them separately without loss of generality. We propose a novel data-pooling algorithm called Shrunken-SAA that disproves this intuition. In particular, we prove that combining data across problems can outperform decoupling, even when there is no a priori structure linking the problems and data are drawn independently. Our approach does not require strong distributional assumptions and applies to constrained, possibly nonconvex, nonsmooth optimization problems such as vehicle-routing, economic lot-sizing, or facility location. We compare and contrast our results to a similar phenomenon in statistics (Stein’s phenomenon), highlighting unique features that arise in the optimization setting that are not present in estimation. We further prove that, as the number of problems grows large, Shrunken-SAA learns if pooling can improve upon decoupling and the optimal amount to pool, even if the average amount of data per problem is fixed and bounded. Importantly, we highlight a simple intuition based on stability that highlights when and why data pooling offers a benefit, elucidating this perhaps surprising phenomenon. This intuition further suggests that data pooling offers the most benefits when there are many problems, each of which has a small amount of relevant data. Finally, we demonstrate the practical benefits of data pooling using real data from a chain of retail drug stores in the context of inventory management. This paper was accepted by Chung Piaw Teo, Special Issue on Data-Driven Prescriptive Analytics.more » « less
An official website of the United States government

Full Text Available